-内页标题

美高梅游戏中心_美高梅游戏登录中心

 
动向讯息
告诉通告
   
   
 
 

关于瑞典斯德哥尔摩大学Hongyi Xu博士学术陈诉的告诉

编辑:日期:2019-06-20 美高梅游戏登录中心:


陈诉标题:3D Electron Diffraction Methods for Crystal Structure Determination

陈诉人:Hongyi Xu博士

所在:曹光彪楼324集会室

日期:2019625日上午10:00-11:30

约请人:王勇传授

  

陈诉人简介:Dr. Hongyi Xu is a researcher in Department of Materials and Environmental Chemistry at Stockholm University. His main research interest is to develop the pipelines for routinely solving nano- and micro-sized 3D protein crystals using 3D electron diffraction (ED) data through Cryogenic-Electron Microscopy (Cryo-EM) and Electron crystallography.

  

陈诉内容:Knowing the 3D atomic structures of materials and macromolecules is crucial for understanding their functions. X-ray diffraction is currently the most important technique for determination of 3D atomic structures, but requires large crystals which are often difficult to obtain. Electrons, similar to X-rays and neutrons, are powerful source for diffraction experiments1. Due to the strong interactions between electrons and matter, crystals that are considered as powder in X-ray crystallography can be treated as single crystals by 3D electron diffraction methods2,3. This enables structure determination of materials and organic molecules from micron- to nanometer-sized 3D crystals that are too small for conventional X-ray diffraction. Furthermore, by taking the advantages of the unique properties of electron scattering, it is possible to determine the charge states of atoms/ions4 and the absolute structure of chiral crystals5,6.

 

Over the past decades, a number of 3D ED methods have been developed for structure determination. At the early stages of 3D ED method development, tilting of the crystal was done manually, while diffraction patterns were collected on negative film. It could take years before sufficient data were obtained and processed in order to determine the crystal structure. The computerization of TEMs and the development of CCD detectors allowed software to be developed that can semi-automatically collect 3D ED data in less than an hour (ie. rotation electron diffraction, RED2 in Zou’s lab). Thanks to the recent advancement in CMOS and hybrid detector technology, it is now feasible to collect diffraction data in movie mode while continuously rotating the crystal (continuous rotation election diffraction, cRED). Benefiting from these technological advances, structure determination can now be accomplished within few hours. Recently, fully automated serial rotation electron diffraction data collection and processing has been realized by our group7.

  

By using RED and cRED methods, we have solved more than 130 novel crystal structures of small inorganic compounds (including zeolite8, MOF9, COF10 and minerals) and organic molecules (pharmaceuticals11, small organic molecules, peptides and proteins12,13) in the past 6 years. We aim to further improve these methods, develop new methods and spread them to labs around the world.

  

References

1. Zou, X., Hovmöller, S. & Oleynikov, P. Electron crystallography: electron microscopy and electron diffraction. (Oxford University Press, 2011).

2. Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

3. Kolb, U., Gorelik, T. E., Mugnaioli, E. & Stewart, A. Structural Characterization of Organics Using Manual and Automated Electron Diffraction. Polym. Rev. 50, 385–409 (2010).

4. Yonekura, K., Kato, K., Ogasawara, M., Tomita, M. & Toyoshima, C. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges. Proc. Natl. Acad. Sci. 112, 3368–3373 (2015).

5. Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).

6. Xu, H. & Zou, X. Absolute structure, at the nanoscale. Science 364, 632–633 (2019).

7. Wang, B., Zou, X. & Smeets, S. Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination. IUCrJ (2019, accepted)

8. Wang, Y., Yang, T., Xu, H., Zou, X. & Wan, W. On the quality of the continuous rotation electron diffraction data for accurate atomic structure determination of inorganic compounds. J. Appl. Crystallogr. 51, 1094–1101 (2018).

9. Wang, B. et al. A porous cobalt tetraphosphonate metal-organic framework: accurate structure and guest molecule location determined by continuous rotation electron diffraction. Chem. - Eur. J. (2018). doi:10.1002/chem.201804133

10. Ding, H. et al. An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nat. Commun. 9, (2018).

11. Wang, Y. et al. Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chem. Commun. 53, 7018–7021 (2017).

12. Xu, H. et al. A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals. Structure 26, 667-675.e3 (2018).

13. Xu, H. et al. Solving the first novel protein structure by 3D micro-crystal electron diffraction. bioRxiv (2019). doi:10.1101/600387 (accepted by Science Advances)

  




 
版权一切:美高梅游戏中心 地点:浙江大学玉泉校区内 您是本站第 位访客
电子邮件:silicon_lab@zju.edu.cn 德律风/传真:0571-87952096 邮编:310027
Baidu
sogou